Macaque claustrum, pulvinar and putative dorsolateral amygdala support the cross-modal association of social audio-visual stimuli based on meaning
Social communication draws on several cognitive functions such as perception, emotion recognition and attention. The association of audio-visual information is essential to the processing of species-specific communication signals. In this study, we use functional magnetic resonance imaging in order to identify the subcortical areas involved in the cross-modal association of visual and auditory information based on their common social meaning. We identified three subcortical regions involved in audio-visual processing of species-specific communicative signals: the dorsolateral amygdala, the claustrum and the pulvinar. These regions responded to visual, auditory congruent and audio-visual stimulations. However, none of them was significantly activated when the auditory stimuli were semantically incongruent with the visual context, thus showing an influence of visual context on auditory processing. For example, positive vocalization (coos) activated the three subcortical regions when presented in the context of positive facial expression (lipsmacks) but not when presented in the context of negative facial expression (aggressive faces). In addition, the medial pulvinar and the amygdala presented multisensory integration such that audiovisual stimuli resulted in activations that were significantly higher than those observed for the highest unimodal response. Last, the pulvinar responded in a task-dependent manner, along a specific spatial sensory gradient. We propose that the dorsolateral amygdala, the claustrum and the pulvinar belong to a multisensory network that modulates the perception of visual socioemotional information and vocalizations as a function of the relevance of the stimuli in the social context.
Vulnerable Minds: The HARM of Childhood Trauma and the HOPE OF Resilience
In Vulnerable Minds, Hauser provides a new, scientific and humanistic understanding of how the nature of childhood adversity creates unique signatures of trauma. At the same time, Hauser reveals that some children bounce back from adversity, presenting with signatures of resilience. Hope for these children comes from designing interventions that are sensitive to their signatures, enabling greater resilience to and recovery from trauma.
Socially meaningful visual context either enhances or inhibits vocalisation processing in the macaque brain
Social interactions rely on the interpretation of semantic and emotional information, often from multiple sensory modalities. Nonhuman primates send and receive auditory and visual communicative signals. However, the neural mechanisms underlying the association of visual and auditory information based on their common social meaning are unknown. Using heart rate estimates and functional neuroimaging, we show that in the lateral and superior temporal sulcus of the macaque monkey, neural responses are enhanced in response to species-specific vocalisations paired with a matching visual context, or when vocalisations follow, in time, visual information, but inhibited when vocalisation are incongruent with the visual context. For example, responses to affiliative vocalisations are enhanced when paired with affiliative contexts but inhibited when paired with aggressive or escape contexts.
Computational constraints on syntactic processing in a nonhuman primate
The capacity to generate a limitless range of meaningful expressions from a finite set of elements differentiates human language from other animal communication systems. Rule systems capable of generating an infinite set of outputs (“grammars”) vary in generative power. The weakest possess only local organizational principles, with regularities limited to neighboring units. We used a familiarization/discrimination paradigm to demonstrate that monkeys can spontaneously master such grammars. However, human language entails more sophisticated grammars, incorporating hierarchical structure. Monkeys tested with the same methods, syllables, and sequence lengths were unable to master a grammar at this higher, “phrase structure grammar” level.